Thursday, April 18, 2013

Natural Exponential Function


An exponentiation is relating two numbers, the base a and the exponent n. The n value is a positive integer and exponentiation corresponds to frequent multiplication or a product of n factors.The exponent is written as superscript to the right of the base to the nth power.  The power p is defined as when n is negative integer for non-zero. When the base a is positive real number, p is defined for exponential function.

Formulas for natural exponential function

ex       =  `(x)/(1!)`       +  `(x^(2))/(2!) + .................`

e0 = 1

d(ex) = ex

In trigonometry function the natural exponential function,

cos (x) =`(e^(ix) + e^(-ix))/(2)`

sin (x) = `(e^(ix) - e^(-ix))/(2i)`


In complex number the natural exponential function:

The symbol eiθ or exp (iθ) (called exponential of iθ) is defined by

eiθ = cos θ + i sin θ

This relation is known as Euler’s formula.

If z ≠ 0 then z = r (cos θ + i sin θ) = reiθ. This is called the exponential

form of the complex number z. By straight forward multiplication of

eiθ1 = (cos θ1 + i sin θ1) and eiθ2 = cos θ2 + i sin θ2

we have eiθ1.eiθ2 = ei(θ1+ θ2)

Example problems for natural exponential function

Problem for natural exponnential function 1:

Expand the term e2x    in natural exponential function.

Solution:

The given function is e2x we have to expand the term using the formula

Solution:

ex       =  `(x)/(1!)`       +  `(x^(2))/(2!) + ....................`

e2x    =   1    +     `(2x)/(1!)`       +  `(2x^(2))/(2!) + ..............................`

=  1    +     `(2x)/(1!)`       +  `4x^(2)/(2!) + .......................`

=  1   +   2x     +   2 x2                +   ..................

Problem for natural exponnential function 2:

Expand the term e4x    in natural exponential function.

Solution:

The given function is e4x we have to expand the term using the formula

ex       =  `(x)/(1!)`       +  `(x^(2))/(2!) + ...................`

e4x    =   1    +     `(4x)/(1!)`       +  `(4x^(2))/(2!) + .........................`

=  1    +     `(4x)/(1!)`       +  `16x^(2)/(2!) + ............................`

=  1   +   4x     +   8 x2                +   ..................

No comments:

Post a Comment